SEDIMARD 83 PRESENTATION GENERALE

1. Problématique de gestion des sédiments :

- Une nécessité de fonctionnement : le dragage les ports et canaux
- Un contexte réglementaire plus contraignant depuis 2000 (Seuils GEODE)
- Le sédiment géré à terre est un déchet (Note juridique du MEDD et la réglementation des déchets (décret n°2002-540 du 18 avril 2002)

QUELLES MODES DE GESTION POSSIBLES?

Filière immersion pour les sédiments les moins contaminés

Gisement : 40 à 50 millions de m3 / an

Filière(s) terrestre(s) pour les autres.

Gisement: A préciser suivant territoire et retard de dragage puis récurrence d'entretien (VAR 0,4 Mm3 et fréquence 30 000 m3/an)

- 2. <u>Diagnostic qualitatif et quantitatif du Département du Var</u>
- Le Conseil Général du Var (Département du VAR) était Maître d'Ouvrage de ports répartis sur le territoire du département.
- Le Conseil Général a lancé un Contrat d'Objectif pour la définition d'un schéma de gestion environnementale des sédiments des tous les ports varois dans une démarche partenariale avec les différentes autorités portuaires.

.BE. missionné pour A.M.O.: IN VIVO ENVIRONNEMENT

- Missions confiées :
 - 1. Diagnostic des 54 ports du Var
 - 2. Assistance technique et administrative pour : le montage, l'exécution, et le rendu du projet
 - 3. Identification des filières de gestion à terre possibles

Démarrage du projet par un diagnostic des 54 ports du Département

- Le rejet en mer / un référentiel de qualité environnementale

• Un contexte réglementaire :

Le référentiel GEODE (circulaire du 14/06/2000): qui définit 2 niveaux N1 et N2 pour 8 paramètres métalliques (As, Cu, Cd, Hg, Ni, Cr, Pb et Zn) et 7 congénères des PCB (28, 52, 101, 118, 158, 153 et 180). De façon simplifiée, on considère généralement qu'en dessous de N1, les matériaux sont <u>non contaminés</u>.

Micropolluants	UNITES	2 MD RFQ NIVEAU 1	4 MD RFQ NIVEAU 2
Arsenic (As)	mg/kg	25	50
Cadmium (Cd)	mg/kg	1.2	2.4
Chrome (Cr)	mg/kg	90	180
Cuivre (Cu)	mg/kg	45	90
Mercure (Hg)	mg/kg	0.4	0.8
Nickel (Ni)	mg/kg	37	74
Plomb (Pb)	mg/kg	100	200
Zinc (Zn)	mg/kg	276	552

< Niveau 1

Impact potentiel jugé d'emblée neutre

Entre Niveau 1 et 2

Investigations complémentaires proportionnées

> Niveau 2

Investigations approfondies

6.60

12.70

5.50

PA

15.50

25.00

19.00

4.65

7.20

11.17

7.80

9.20

14.20

2.30

15.20

14.00

1.00

PA

31.00

15.00

21.00

55.00

21.00

43.00

26.20

6.80

16.00

8.40

PΑ

0.23

0.23

0.02

PΑ

0.16

0.20

0.32

0.23

1.00

0.06

0.10

0.16

0.08

0.12

1.64

0.40

1.00

PΑ

0.40

PΑ

0.27

1.80

0.20

2.40

0.30

0.47

0.40

0.10

PΑ

2.15

82.90

PA

115.00

8.10

74.00

31.70

73.60

9.00

130.00

PΑ

87.00

71.00

74.00

55.80

55.00

11.00

PA

Saint-Cyr Vieux port

Engraviers

Bandol

Sanary

Le Brusc

Les Emblez 1

Les Emblez 2

Saint-Mandrier

La Petite Mer

La Seyne/Mer

Arsenal, Quai Artillerie

Arsenal, Quai Artillerie (ech. ao

Arsenal petits bassins vauban

Arsenal, Passe Castianeau

Arsenal, Chenal Vauban

Saint-Elme

Pin Rolland

Brégaillon

Vieille Darse

Toulon C.A.

Darse N. Mourillon

St-Louis Mourillon

Les Oursinières

Saint-Cyr nouveau port

Bandol (ech. août 2001)

Port Méditerranée

Brusc (base nautique)

La Coudoulière

La Madrague des Lecques

WASCON JUIN 2009 Présentation générale du projet SEDIMARD 83

Ports	Arsenic	Cadmium	Cuivre	Mercure	Plomb	Zinc (mg/kg)	Chrome	Nickel	HAP (mg/kg)	PCB (en	TBT (en
10113	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	zilic (ilig/kg)	(mg/kg)	(mg/kg)	mar (mg/kg/	mg/kg)	μg/kg)
La Ciotat-St Jean	1.60	0.10	81.00	PA	12.00	20.00	2.30	PA	PA	PA	PA

19.40

54.00

36.20

PA

120.00

100.00

102.00

5.55

58.00

25.90

62.30

101.00

91.00

15.00

109.00

100.00

464.00

PΑ

90.00

80.00

31.00

478.00

120.00

112.40

100.00

18.00

PA

16.40

200.00

100.10

PA

252.00

165.00

309.00

43.45

168.00

94.20

100.30

410.00

207.00

25.00

258.00

160.00

392.00

PA

180.00

190.00

190.00

1 240.00

260.00

242.00

358.70

200.00

44.00

PA

10.40

33.00

16.60

PA

41.00

46.00

46.00

8.50

26.00

22.03

18.50

42.00

38.00

11.00

35.00

36.00

26.00

PA

55.00

45.00

30.00

63.00

49.00

120.00

65.00

44.90

32.00

17.00

PA

2.00

56.00

13.00

PA

55.00

25.00

56.00

18.80

20.00

25.29

15.87

50.00

48.00

3.00

33.00

15.00

34.00

PA

24.00

20.00

22.50

45.00

25.00

34.00

59.00

48.30

15.00

8.00

PΑ

0.05*

0.13*

PA

4.48

0.61*

PA

0.11

0.74

4.00

0.06

0.29

PA

PA

0.33

1.44

4.31

8.54

0.03

0.02

0.20

0.22

PΑ

0.04*

0.03

0.03*

PA

0.11

0.28

0.07

0.0016*

0.00

0.0087*

0.015*

0.45

0.33

0.01

0.25

0.09

0.19

PA

0.84

0.30

0.70

0.05

0.92

0.44

0.08

0.73

0.01

PA

90.00

210.00

220.00

PA

400.00

17.13

PA

160.00

440.00

460.00

0.45

350.00

44.00

PA

PΑ

PΑ

PΑ

2 944.00

PΑ

PΑ

PΑ

PΑ

PΑ

10.00

PΑ

0.16

0.20

0.10

PΑ

0.96

1.10

4.34

0.06

0.15

0.16

0.11

0.32

0.05

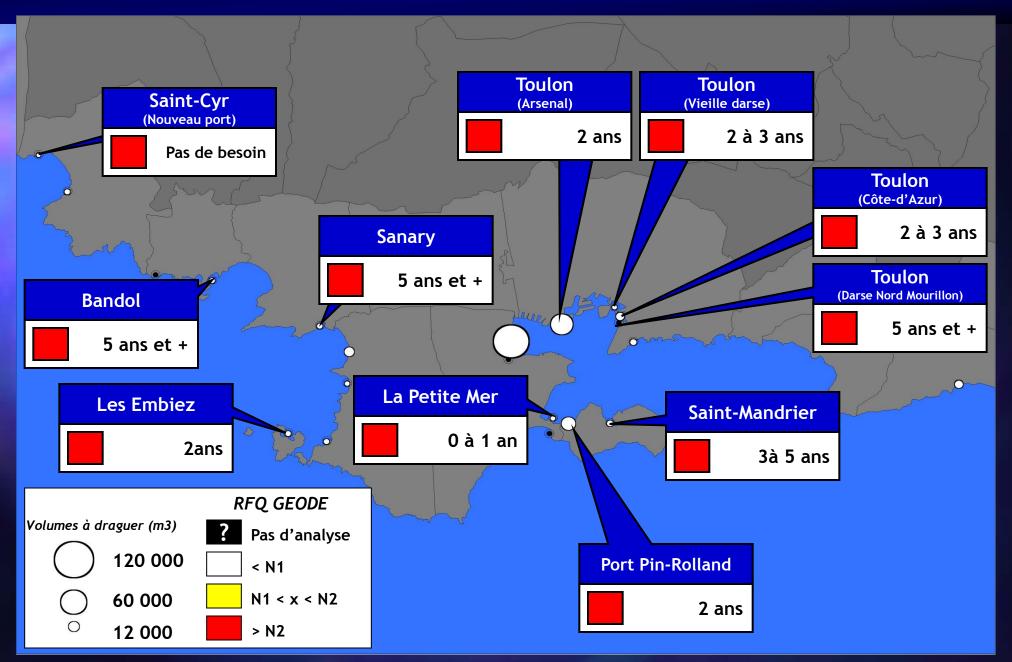
1.64

.40

0.10

PΑ

1.10

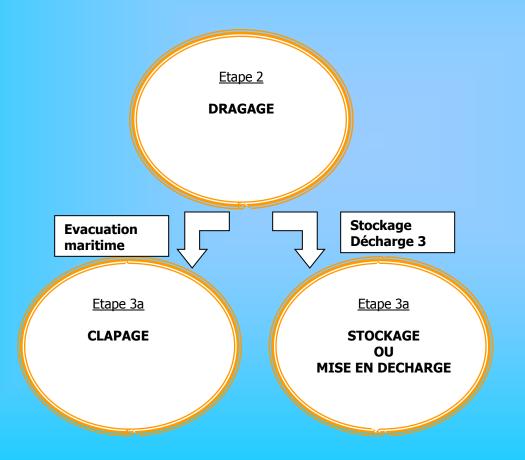

4.70

8.08

1.08

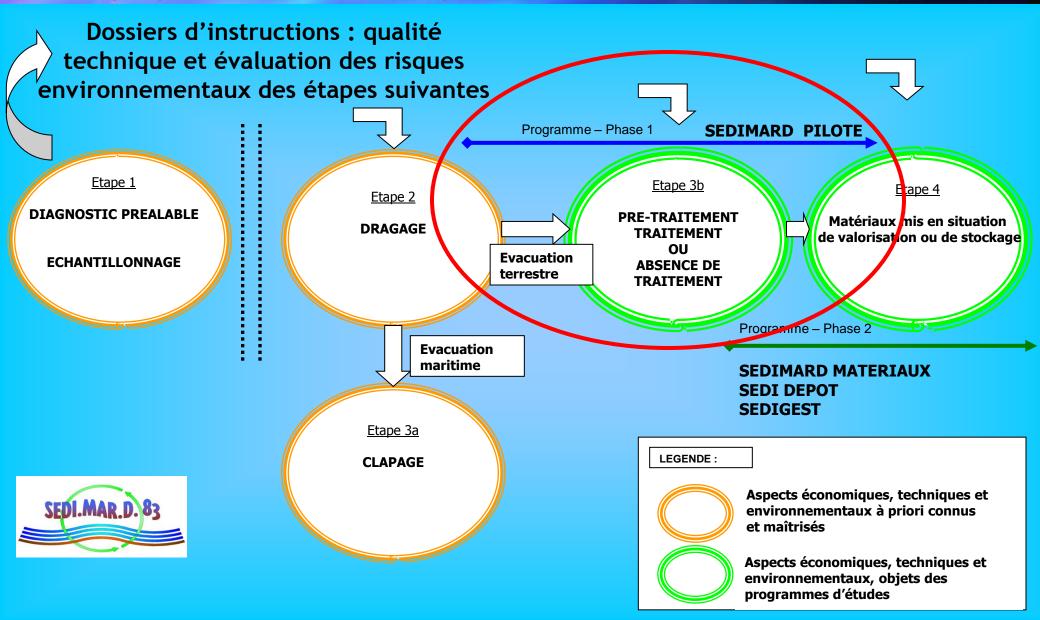
0.05

PA


2. <u>Diagnostic qualitatif et quantitatif du Département du Var</u>

- Conclusion du diagnostic (2001) sur les 54 ports du Var :
- Le gisement potentiel en 2001/2002 (incluant les retards de dragage)
 - 420 000 m^{3 in situ}, dont:
 - 145 000 m^{3 in situ} > N1
 - 215 000 m^{3 in situ} > N2
- La projection sur 20 ans du gisement (incluant les besoins en dragage et l'estimation de la sédimentation):
 - 1 100 000 m³
 - dont 650 000 m³ > N1 et difficilement immergeables (localisation, aspects socio-environnentaux...)

Conclusion : Opportunité de la création d'un centre de regroupement, de tri et de traitement des sédiments (> N1)


3. Le programme SEDIMARD 83, positionnement dans la problématique

Rappel historique d'une évolution réglementaire liée à la protection des milieux aquatiques

3. <u>Le programme SEDIMARD 83, positionnement dans la problématique</u>

4. Objectifs et gouvernance du projet SEDIMARD.

- Caractériser techniquement et quantitativement le déchet « sédiments marins » sur un grand panel de sédiment (afin d'intégrer la grande variabilité des sédiments);
- Tester des pré-traitements et traitements simples et couramment utilisés (Compostage, calcination, chaulage...) afin d'améliorer la qualité intrinsèque des sédiments ;
- Inerter les contaminants contenus dans les sédiments par des traitements à base de liants hydrauliques;
- Identifier les filières de valorisation possibles et/ou les exutoires potentiels;
- Définir un protocole de dangerosité pour le déchet « sédiment ».

4. Objectifs et gouvernance du projet SEDIMARD.

- Projet multi-partenaires associant :
 - La Marine Nationale
 - La Chambre de Commerce et d'Industrie du VAR (CCIV)
 - Communes gestionnaires de ports
 - La Conseil général 06
 - Communauté Urbaine de Marseille Provence Métropole (CUMPM)
 - Le Conseil Général du Finistère (CG29)
 - La Région Emilia Romagnia (ARPA) Italien
- Des partenariats techniques et financiers associant :
 - Agence de l'eau R.MC.
 - La Région P.A.C.A.
 - L'A.D.E.M.E. PACA et Angers

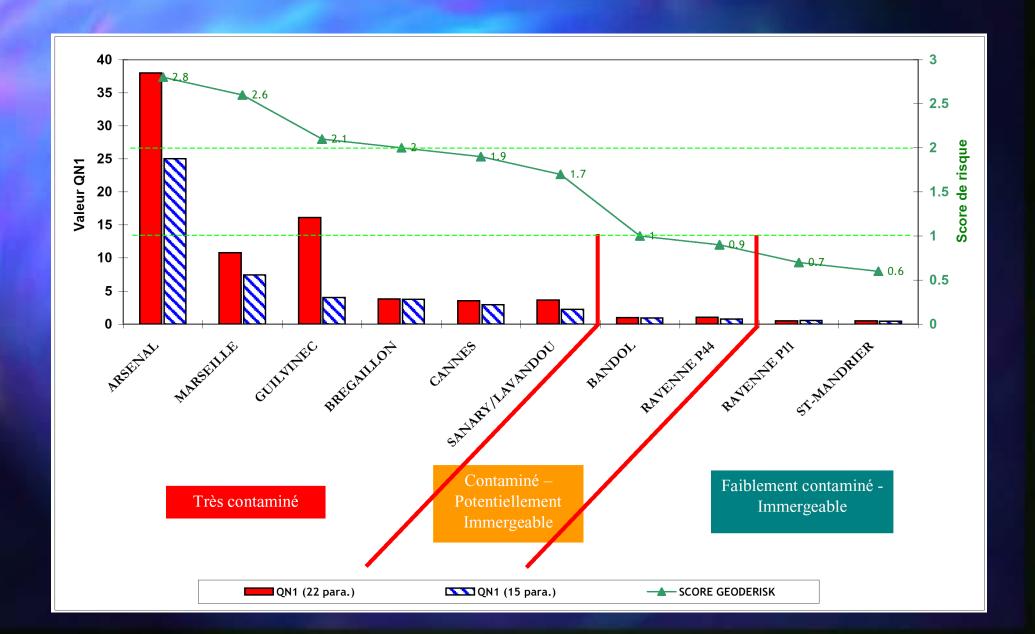
5. Ports prélevés: une grande variabilité de Sédiments

CANNES (06)

RAVENNE (Italie)

MARSEILLE (13)

SAINT MANDRIER


BREGATILION

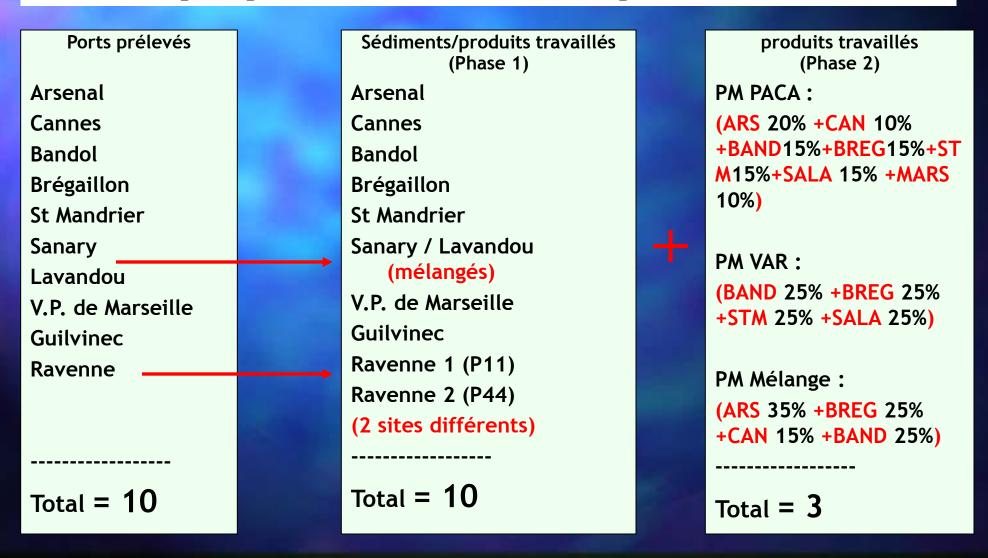
Projet collectif associant plusieurs ports méditerranéens dont un italien et un port atlantique

BANDOL

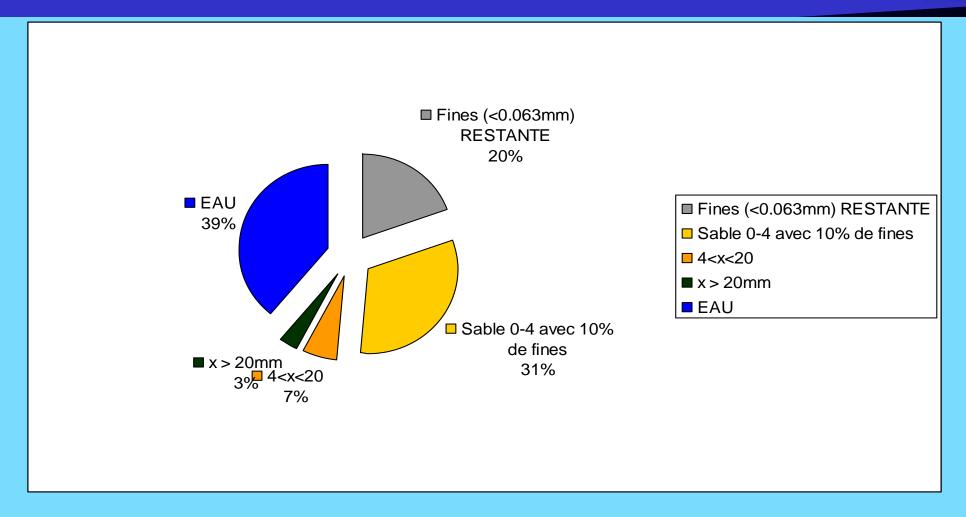
LE GUILVINNEC (29)

		Référe	antial.		CTM		DAY/ENINE		DAND		CALA		CAN		DDEC		CLIII		A A DC		ADC
		GEC			STM		RAVENNE		BAND		SALA		CAN		BREG		GUIL		MARS		ARS
		N1	N2		valeur		valeur		valeur		valeur		valeur		valeur		valeur		valeur		valeur
PROPRIETES PHYSICO					00.7		50.0		00.4		50.4		00.0		44.7		45.4		40	ш	40.7
Siccité Densité	en % sans unités			=	38,7	=	56,8 1,62		60,1	=	53,4	=	63,6 1,68	=	41,7	=	45,1 1,57	=	42	=	42,7 1,36
pH	sans unités			=	8,4	=	8,6	=	8,6	=	8,7	=	8,7	=	8,4	=	8,6	_	8,6	=	8,7
Chlorures	en mg/kg de MS			=	34115	=	8360	=		=	17 282	=	14 938	=		=	18 512	=	30509	=	29 113
MATIERES ORGA	ANIQUES																				
СОТ	en g/kg de MS	ı		=	60	ı	9,6	=	21	=	33	=	27,4	=	53	=	53	=	88	=	102,5
NTK	en g/kg de MS			=	3,7	=	0,9	=	1,0	=	1,7	=	1,0	=	2,7	=	2,9	=	3,8	=	2,4
P CONTAMINANTS INC	en mg/kg de MS			=	220	=	759	_	299	=	1 031	=	505	=	419	=	1 750	=	1 253	=	807
Al	en mg/kg de MS			_	25 171	_	20 607	=	15 993	=	27 222	=	19 356	=	35 887	_	26 834	=	17 131	=	31 245
As	en mg/kg de MS	25	50	=	16	=	4	=	16	=	34	=	21	=	30	=	20	=	30	=	196
Ва	en mg/kg de MS			=	99	ı	84	=	147	=	299	=	243	=	231	=	416	=	561	=	129
Cd	en mg/kg de MS	1,2	2,4	=	0,3	=	0,3	=	0,4	=	0,8	=	0,6	=	1	=	1,4	=	3,7	=	5,9
Cr	en mg/kg de MS	90 45	180 90	=	53 48	=	97 34	=		=	51 504	=	48 166	=	58 206	=	72 1 354	=	68 456	=	94 1 459
Cu Hg	en mg/kg de MS en mg/kg de MS	0.4	0,8	=	0.4	=	0.7	=	95 2.5	-	0.5	=	5.4	=	14.9	=	3.9	=	11.4	=	111.5
Mo	en mg/kg de MS	0,4	0,0		36	=	1	=	9	=	8	=	4	=	20		10	=	14	=	16
Ni	en mg/kg de MS	37	74	=	26	ı	64	=	14	=	25	=	17	=	33	=	26	=	29	=	42
Pb	en mg/kg de MS	100	200	=	37	ı	24	=	62	=	246	=	198	=	278	=	200	=	1 011	=	1 340
Sb	en mg/kg de MS			=	1	<	0,7	<	0,7	<	0,7	=	1	=	3	<	0,7	=	14	=	13
Se Zn	en mg/kg de MS en mg/kg de MS	276	552	=	93	=	0,7 104	=	0,7 145	<u> </u>	0,7 565	<	0,7 359	<	0,7 488	٧ =	0,7 1 096	<	0,7 2 415	<	0,7 3 493
Cyanures totaux	en mg/kg de MS	2/6	332	<	0,1	-	0,1	=		=	0,1	=	0,1	= <	0,1		0,1		0,1	<	0,1
PCB	en mg/kg de me				0,1		0,1		0,1		0,1		0,1		0, 1		0,1		0, 1		<u> </u>
PCB 28	en µg/kg de MS	25	50	٧	4	٧	4	٧		٧	4	<	4	٧	4	٧	4	٧	4	٧	4
PCB 52	en µg/kg de MS	25	50	=	10	=	10	=	10	=	60	=	110	=	10	=	40	=	200	=	50
PCB 101	en µg/kg de MS	50	100	=	10	=	10	=	20	=	90	=	140	=	30	=	60	=	230	=	150
PCB 118 PCB 138	en µg/kg de MS en µg/kg de MS	25 50	50 100	=	10 10	=	10 10	=	20 30	=	90 100	=	100 110	=	30 60	=	70 80	=	190 410	=	130 180
PCB 136	en µg/kg de MS	50	100	=	10	=	10	=	20	=	90	=	200	=	70	H	80	=	330	=	280
PCB 180	en µg/kg de MS	25	50	<	4	=	5	=	10	=	50	=	90	=	40	=	50	=	320	=	100
Σ 7 PCB	en µg/kg de MS	250	500	=	58	=	59	=	114	=	484	=	754	=	244	=	384	=	1 684	=	894
HAP													4.45		400					ш	
Naphtalène	en µg/kg de MS			<	10 10	=	50 10	= <	35 10	<	10 10	=	140 210	=	160 110	=	510 660	=	1 410 610	=	10 1 360
Acénaphtène Acénaphtylène	en µg/kg de MS en µg/kg de MS			<	10	-	110	<	10	~	10	=	70	=	10		10	_=	180	=	10
Fluorène	en µg/kg de MS			~	10	/=	22	=	10	~	10	=	110	=	140	=	580	=	960	~	10
Anthracène	en µg/kg de MS			=	60	=	22	=	41	=	50	=	220	=	210	=	1 110	=	2 780	=	6 070
Phénanthrène	en µg/kg de MS			=	330	=	160	=	250	=	390	=	1 930	=	2 080	=	4 110	=	7 150	=	29 280
Fluoranthène	en µg/kg de MS	400	5 000	=	320	=	180	=	240	=	520	=	1 980	=	4 600	=	7 270	=	12 820	=	28 650
Pyrène Benzo a anthracène	en µg/kg de MS en µg/kg de MS			=	280 240	=	500 150	=	330 270	=	520 750	=	1 360 1 240	=	2 120 1 590	=	6 400 8 820	=	10 080 12 850	=	28 740 29 600
Chrysène	en µg/kg de MS			=	100	=	37	=	90	=	220	=	830	=	910	=	3 300	=	4 760	=	9 730
Benzo b fluoranthène	en µg/kg de MS	300	3 000	=	120	=	19	=	110	=	270	=	800	=	820	=	2 860	=	5 050	=	11 480
Benzo k fluoranthène	en µg/kg de MS	200	2 000	=	80	I	10	=	110	=	170	=	500	=	400	=	1 620	=	1 940	=	7 870
Benzo a pyrène	en µg/kg de MS	200	2 000	=	110	=	18	=	130	=	350	=	1 340	=	620	=	4 350	=	5 800	=	18 560
Dibenzo ah anthracène	en µg/kg de MS	200	2 000	=	10 130	<u> </u>	10 150	=	28 140	=	60 280	=	240 660	=	150 500	=	570 2 210	=	660 2 570	=	3 250 13 480
Benzo ghi pérylène Indéno 1.2.3 pyrène	en µg/kg de MS en µg/kg de MS	200	1 000	=	90	= <	150	=	110	=	240	=	460	=	470	=	2 010	=	1 810	=	13 480
Σ 6 HAP	en µg/kg de MS	1500	15 000		850	-	387	=	840	=	1 830	=	5 740	=	7 410		20 320	=	29 990	=	90 980
Σ 16 ΗΑΡ	en µg/kg de MS			=	1 910	ı	1 458	=	1914	=	3 860	=	12 090	=	14 890	=	46 390	=	71 430	=	199 040
INDICE HYDROCA																					
Hydrocarbures totaux BTEX	en mg/kg de MS			=	64	=	305	=	1 225	=	162	=	246	=	500	=	3 541	=	563	=	5 903
Benzène	en µg/kg de MS			<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
Toluène	en µg/kg de MS			<	1	~	1	<		-	1	~	1	~	1	=	2,32	~	1	~	1
o Xylène	en µg/kg de MS			<	1	~	1	<		<	1	<	1	<	1	=	93,37	=	12	<	1
m+p Xylène	en µg/kg de MS			<	2	٧	2	<	2	<	2	<	2	<	2	=	510,47	٧	2	<	2
Ethyl benzène	en µg/kg de MS			<	1	٧	11	<		<	1	<	1	<	1	=	188,38	=	5	٧	1
COM POSES ORGANO	en µg/kg de MS			<	7	<	7	<	7	<	7	<	7	<	7	=	795,5	=	21	<	7
	n µg de Sn/kg de M:	100	400	=	78	-	211	=	437	=	3 912	=	1 248	=	386	_	21 639	=	1 685	=	9 576
	n µg de Sn/kg de M		700	=	36	=	36	=	163	=	987	=	196	=	167	=	4 229	=	495	=	1 028
Monobutylétain	n µg de Sn/kg de M			=	60	_	10	=	338	=	1 026	=	191	=	166	=	2 040	=	304	=	288
QN1 (paramètres	s GEODE)				0,4		0,5		1,0		2,3		2,9		3,8		4,0		7,4		25,0
QPEC	COLIE				0,3		0,4		0,5		1,0		1,2		2,2		2,1		3,5		15,2
SCORE DE RIS	SQUE				0,6		0,7		1,0		1,9		1,7		2,0		2,1		2,6		2,8

CLASSIFICATION GTR / selon norme NF P 11-300


	Arsenal	Brégaillon	Ravenne P11	Marseille	St Mandrier	Sanary/ Lavandou	Cannes	Bandol	Guilvinec	Ravenne P44
Classification GTR Taux en MO	F12	F11	/	F12	F12	F11	F11	F11	/	/
Classification GTR Taux de fines	Α	А	А	В	В	В	В	В	В	В
Classification GTR Ip ou MB	A3	A1	N.M.	В6	B5	B5	B5	B5	В5	N.M.
Classific ation GTR	A ₃ F ₁₂	A ₁ F ₁₁	Α	B ₆ F ₁₂	B ₅ F ₁₂	B ₅ F ₁₁	B ₅ F ₁₁	B ₅ F ₁₁	B ₅	В

Avec : A = Sol fin ; B = Sol sableux ; F= Sol organique ; N.M.= Non mesurée ; voir norme NF P 11-300 pour les spécifications.


- Hétérogènes: sols fins (35% de fines) et des sols sableux avec présences de MO et d'argiles en quantité variable
- Possibilité de valorisation sans traitement préalable difficile.

• Prélèvements / Ports du Pilote :

$\sqrt{10}$ ports prélevés soit 10 sédiments et 13 produits travaillés

- Opération pilote / Composition moyenne des déchets du pilote

DIFFERENTS PRODUITS:

Fines, 0/4mm lavés, 0/4 mm brut, 0/20 mm ou 4/20 mm, >20 mm, macro-déchets et eau.

• Traitements / Dessablage

✓ 11 opérations de dessablage

Dessablage Pilote sur Brut 0-20 mm (Phase 1 du Pilote) **Arsenal Cannes Bandol** Brégaillon St Mandrier Sanary Lavandou V.P. de Marseille Guilvinec Ravenne 1 (P11) Ravenne 2 (P44) Total = 8

Dessablage <u>industriel</u> sur Brut 0-4 mm (Phase 2 du Pilote) Arsenal PM VAR PM PACA Total = 3

• Traitements / Compostage

✓ 24 opérations de compostage allant de 4 à 6 mois

Sur Brut O-infini

Arsenal Cannes

Bandol

Brégaillon

St Mandrier

Sanary Lavandou

V.P. de Marseille

Guilvinec

Raverne 1 (P11)

Ravenne 2 (P44)

Total = 8

sur Fines 0-63µm

Arsenal

Cannes

Bandol

Brégaillon

St Mandrier

Sanary Lavandou

V.P. de Marseille

Guilvinec

Ravenne 1 (P11)

Ravenne 2 (P44)

.....

Total = 7

sur<mark>Fines</mark> Phosphat. 0-63µm (Phase 1)

Arsenal

Cannes

Bandol

Brégaillon

St mandrier

Sanary Lavandou

V.P. de Marseille

Guittinec

Raverne 1 (P11)

Raverne 2 (P44)

Total = 4

sur Brut
Phosphatation
0-6mm
(Phase 2)

Arsenal

Cannes

Bandol

Brégaillon

St mandrier

Sanary Lavandou

V.P. de Marseille

Guilvinec

Rayerne 1 (P11)

Raverne 2 (P44)

Total = 5

• Traitements / Phosphatation

✓ 19 opérations de phosphatation

```
Phosphatation sur
        Brut
       0-6mm
      (Phase 1)
Arsenal
Cannes
Bandol
Brégaillon
St Mandrier
Sanary Lavandou
V.P. de Marseille
Guilvinec
Ravenne 1 (P11)
Ravenne 2 (P44)
Total = 10
```

```
Phosphatation sur
        Fines
       0-63µm
      (Phase 1)
Arsenal
Cannes
Bandol
Brégaillon
St Mandrier
Sanary Lavandou
V.P. de Marseille
Guivinec
Rayerne 1 (P11)
Raverne 2 (P44)
Total = 7
```

```
Phosphatation sur
     Brut Composté
        0-4mm
       (Phase 2)
Arsenal
PM VAR
PM PACA
Total = 2
```

• Traitements / Chaux vive

✓ 9 opérations de traitement à la chaux vive

Grosse Quantité (3 à 5t)

Guilvinec Brut

Guilvinec Fines

Total = 2

sur Brut
Phosphatation
0-6mm
Petite quantité (70kg)
Arsenal
Cannes
Bandol
Brégaillon
St Mandrier

V.P de Marseille

Sanary Lavandou

Guilvinec

Ravenne 1 (P11)

Ravenne 2 (P44)

Total = 7

• Traitements / Calcinations :

✓ 25 opérations de compostage allant de 4 à 6 mois

Phosphat. 0-63µm (Phase 1) Arsenal Cannes Bandol Brégaillon	Phosphat. 0-6mm (Phase 1) Arsenal Cannes Bandol Brégaillon
(Phase 1) Arsenal Cannes Bandol	(Phase 1) Arsenal Cannes Bandol
Arsenal Cannes Bandol	Arsenal Cannes Bandol
Cannes Bandol	Cannes Bandol
Bandol	Bandol
Brégaillon	Brégaillon
	2. 5 5
St Mandrier	St Mandrier
Sanary Lavandou	Sanary Lavandou
V.P. de Marseille	V.P. de Marseille
Guivinec	Guilvinec
Ravence 1 (P11)	Ravenne 1 (P11)
Ravenne 2 (P44)	Ravenne 2 (P44)
Total = 7	Total = 10
	Sanary Lavandou V.P. de Marseille Guivinec Ravense 1 (P11) Ravense 2 (P44)

7. LES PRINCIPAUX CHIFFRES - BANQUE DE DONNEES - SEDIMENTOTHEQUE

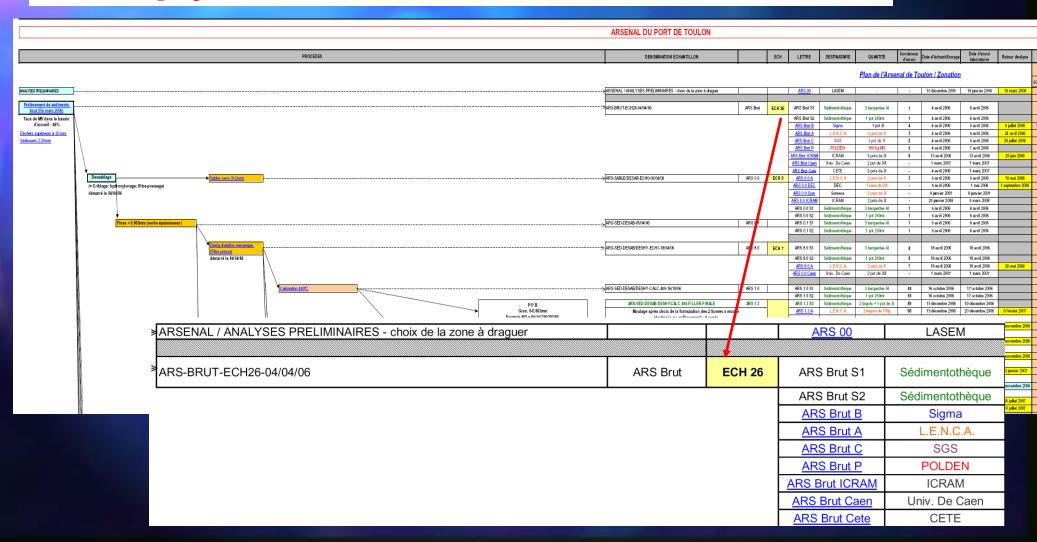
- √14 missions à coordonner
- ✓1 appel d'offre européen + 13 marchés à procédure adaptées
- ✓¹ comité technique de pilotage
- √1 Groupe d'experts scientifiques
- ✓11 conventions de partenariats (Financeurs technique et cofinanceurs)
- ✓6 dossiers d'instructions réglementaires (ICPE, PYRO, loi sur l'eau...)
- √1.8 M d'

 € d'investissement dont 300 k

 € pour la plate forme
- √1 équipe projet de 3 personnes
 - √2.5 Techniciens
 - ✓ 0.5 administratifs

• Banque de données ANALYTIQUE : +2700 analyses

Regroupée dans un outil au format Excel


• Banque de données PHYSIQUE : + 520 produits stockés

Regroupée dans une sédimentothèque

- COMPLETES par des études transversales :
 - ✓ Réalisation d'un protocole de définition de la dangerosité (H14) / INSAVALOR POLDEN
 - ✓ Bio-essais marins sur produits brut ICRAM
 - ✓ Spéciation des métaux en phase de Compostage / Université de Pau UT2A
 - ✓ Stabilisation Solidification sur produits pré-traités / INSAVALOR POLDEN
 - ✓ Stabilisation par utilisation des zéolithes / LRSAE Université de Nice
 - ✓ Stabilisation des Fines / INSAVALOR POLDEN
 - ✓ Comportement mécanique des sédiments solidifiés/stabilisés Université de Caen
 - ✓ Etude de caractérisation des produits issus du pilote en vue de leur réutilisation en remblai – Sables + matériaux alternatifs/ CETE/Méditerranée
 - ✓ AMO juridique / Cabinet UGLO LEPAGE
 - ✓ Analyses Radio-écologiques / LASEM (Laboratoire de la Marine Nationale)

Banque de données ANALYTIQUE : +2700 analyses

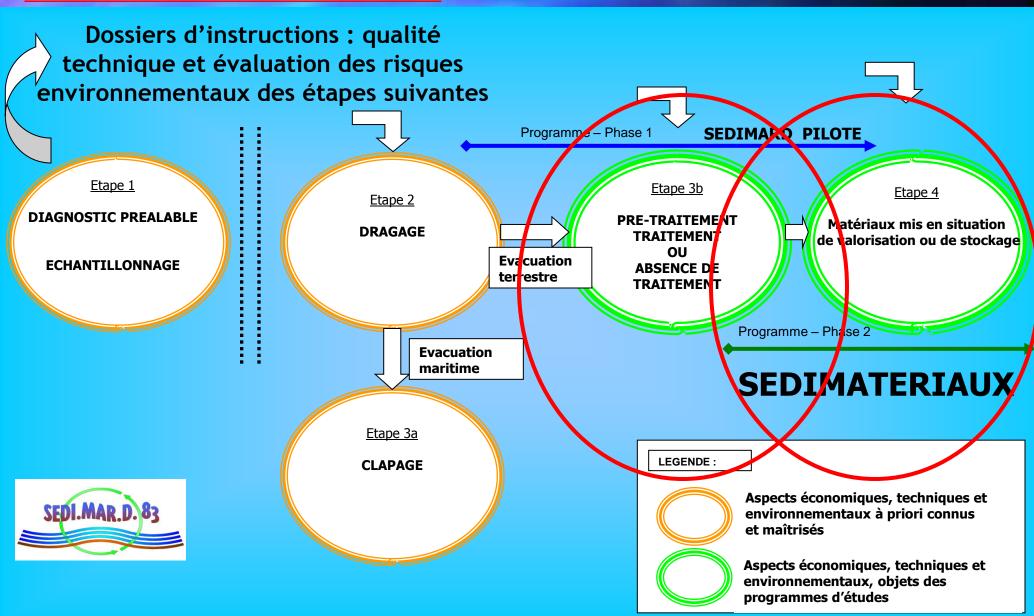
Regroupée dans un outil au format Excel

8. CONCLUSION ET PERSPECTIVES OPERATIONNELLES

DU POINT DE VUE TECHNIQUE ET ENVIRONNEMENTAL

- -De caractériser un très large éventail de sédiments au delà des simples paramètres RFQ dans une logique de gestion de déchets terrestres.
- -D'identifier et caractériser une présence importante de macro-déchets, voire dans certains cas d'une fraction végétale.
- -De confirmer les effets toxiques sur le milieu marin.
- -D'évaluer comparativement l'efficacité des différents traitements en situation pré-industrielle aussi bien sur les produits bruts que les dessablés.
- -D'identifier les scénarios de valorisation et de développer une approche géotechnique indispensable. Avec dans certain cas une économie de ressources naturelles
- -De confirmer de la nécessité d'un stockage tampon provisoire des produits dragués.

LE CHANTIER PILOTE SEDIMARD 83 A PERMIS PRINCIPALEMENT D'UN POINT DE VUE SOCIETAL


- De mesurer le très fort soutien des associations de protection de l'environnement exprimé au travers une abondante communication positive spontanée en France et en Europe.
- D'informer largement les populations par des visites régulières du site (absence d'odeurs, de bruits...)
- De sensibiliser les jeunes générations par l'organisation de visites d'écoles.
- D'identifier les évolutions réglementaires Nécessaires à la gestion terrestre.
- De montrer la nécessité de création d'emplois dans les nouvelles filières éco-industrielles de valorisation.

LE CHANTIER PILOTE SEDIMARD 83 A PERMIS PRINCIPALEMENT

-D'UN POINT DE VUE ECONOMIQUE

- De hiérarchiser les différentes chaînes de traitements en fonction de leur ratio coût/efficacité.
- De démontrer qu'une gestion environnementale terrestre sera forcément plus coûteuse que les anciennes méthodes de simples rejets en mer.
 - D'identifier le nécessaire développement de filières éco-industrielles pour la gestion à terre des sédiments.
 - D'identifier la nécessité de l'innovation dans le domaine, sur un marché qui s'étend bien au delà du VAR.

PERSPECTIVES OPERATIONNELLES

MERCI DE VOTRE ATTENTION